The longest chain among random points in Euclidean space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quaternionic Curves in the Semi-Euclidean Space E_4_2

In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.

متن کامل

Characterizations of Slant Ruled Surfaces in the Euclidean 3-space

In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...

متن کامل

A Clt concerning Critical Points of Random Functions on a Euclidean Space

We prove a central limit theorem concerning the number of critical points in large cubes of an isotropic Gaussian random function on a Euclidean space.

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

A Combinatorial Result About Points and Balls in Euclidean Space

A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary n-dimensional Euclidean space R n , solving Problem 2 of [3]. By an n-ball we mean a set of the form { Theorem 1. For each n ≥ 1 there is c n > 0 such that for any finite set X Õ R n there is A Õ X, |A| ≤ 1/ 2 (n+3) , having the following property: if B ⊇ A is an n-ball, then |B « X| ≥ c n |X|. This theorem is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1988

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1988-0943043-6